Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e30017, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707461

ABSTRACT

The transient hypoxic-ischemic attack, also known as a minor stroke, can result in long-term neurological issues such as memory loss, depression, and anxiety due to an increase in nitrosative stress. The individual or combined administration of chronic prophylactic zinc and therapeutic selenium is known to reduce nitrosative stress in the first seven days post-reperfusion and, due to an antioxidant effect, prevent cell death. Besides, zinc or selenium, individually administered, also causes antidepressant and anxiolytic effects. Therefore, this work evaluated whether combining zinc and selenium could prevent stroke-elicited cognition and behavior deficits after 30 days post-reperfusion. Accordingly, we assessed the expression of growth factors at 7 days post-reperfusion, a four-time course of memory (from 7 to 28 days post-learning test), and cell proliferation, depression, and anxiety-like behavior at 30 days post-reperfusion. Male Wistar rats with a weight between 190 and 240 g) were treated with chronic prophylactic zinc administration with a concentration of 0.2 mg/kg for 15 days before common carotid artery occlusion (10 min) and then with therapeutic selenium (6 µg/kg) for 7 days post-reperfusion. Compared with individual administrations, the administration combined of prophylactic zinc and therapeutic selenium decreased astrogliosis, increased growth factor expression, and improved cell proliferation and survival in two regions, the hippocampus, and cerebral cortex. These effects prevented memory loss, depression, and anxiety-like behaviors. In conclusion, these results demonstrate that the prophylactic zinc administration combined with therapeutic selenium can reduce the long-term sequelae caused by the transient ischemic attack. Significance statement. A minor stroke caused by a transient ischemic attack can result in psychomotor sequelae that affect not only the living conditions of patients and their families but also the economy. The incidence of these micro-events among young people has increased in the world. Nonetheless, there is no deep understanding of how this population group responds to regular treatments (Ekker and et al., 2018) [1]. On the basis that zinc and selenium have antioxidant, anti-inflammatory, and regenerative properties in stroke animal models, our work explored whether the chronic combined administration of prophylactic zinc and therapeutic selenium could prevent neurological sequelae in the long term in a stroke rat model of unilateral common carotid artery occlusion (CCAO) by 10-min. Our results showed that this combined treatment provided a long-term neuroprotective effect by decreasing astrogliosis, memory loss, anxiety, and depression-like behavior.

2.
Discov Nano ; 19(1): 60, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564106

ABSTRACT

Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 µL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.

3.
Parkinsons Dis ; 2024: 3885451, 2024.
Article in English | MEDLINE | ID: mdl-38419644

ABSTRACT

In Parkinson's disease (PD), progressive degeneration of nigrostriatal innervation leads to atrophy and loss of dendritic spines of striatal medium spiny neurons (MSNs). The loss disrupts corticostriatal transmission, impairs motor behavior, and produces nonmotor symptoms. Nigral neurons express brain-derived neurotropic factor (BDNF) and dopamine D3 receptors, both protecting the dopamine neurons and the spines of MSNs. To restore motor and nonmotor symptoms to normality, we assessed a combined therapy in a bilateral rat Parkinson's model, with only 30% of surviving neurons. The preferential D3 agonist pramipexole (PPX) was infused for four ½ months via mini-osmotic pumps and one month after PPX initiation; the BDNF-gene was transfected into the surviving nigral cells using the nonviral transfection NTS-polyplex vector. Overexpression of the BDNF-gene associated with continuous PPX infusion restored motor coordination, balance, normal gait, and working memory. Recovery was also related to the restoration of the average number of dendritic spines of the striatal projection neurons and the number of TH-positive neurons of the substantia nigra and ventral tegmental area. These positive results could pave the way for further clinical research into this promising therapy.

4.
Neural Regen Res ; 19(9): 2057-2067, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227536

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral ß-sitosterol ß-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral ß-sitosterol ß-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection. This study found that rNurr1-V5 expression but not that of the green fluorescent protein (the negative control) reduced ß-sitosterol ß-D-glucoside-induced neuropathology. Accordingly, a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum. In addition, tyrosine hydroxylase-positive cells displayed less senescence marker ß-galactosidase and more neuron-cytoskeleton marker ßIII-tubulin and brain-derived neurotrophic factor. A significant decrease in activated microglia (positive to ionized calcium-binding adaptor molecule 1) and neurotoxic astrocytes (positive to glial fibrillary acidic protein and complement component 3) and increased neurotrophic astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10) also occurred in the substantia nigra. These effects followed the bilateral reduction in α-synuclein aggregates in the nigrostriatal system, improving sensorimotor behavior. Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration (senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells), neuroinflammation (activated microglia, neurotoxic astrocytes), α-synuclein aggregation, and sensorimotor deficits. Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect, supporting its potential clinical use in the treatment of Parkinson's disease.

5.
Pharmaceutics ; 15(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38140074

ABSTRACT

Brain neurodegenerative diseases are central nervous system (CNS) affections typically common in older adults. A new therapeutic approach for them consists of providing specific drugs to the CNS through blood circulation; however, the Blood-Brain Barrier (BBB) prevents almost 100% of neurotherapeutics from reaching the brain. There are indications that Focused Ultrasound (FUS), temporarily placed in the BBB, can achieve a controlled increase in temperature at its focus, allowing temporary, localized, and reversible opening of this barrier, which facilitates the temporary delivery of specific drugs. This work presents a FUS-based protocol for the local, temporary, and reversible opening of the BBB in Wistar rats. The proposed protocol specifies certain power, treatment times, and duty cycle to controllably increase the temperature at the region of interest, i.e., the substantia nigra. Numerical simulations using commercial software based on the finite element method were carried out to determine the optimal size of the craniotomies for nearly full-acoustic transmission. Experiments in rats were performed with the parameters used during computational simulations to determine the adequate opening of the BBB. For this, craniotomies of different sizes were made at coordinates of the substantia nigra, and FUS was applied from the exterior. The opening of the BBB was evaluated using Evans Blue (EB) as an indicator of the crossing of the dye from the blood vessels to brain tissue. Numerical simulations demonstrated a major distance reached by the ultrasound focus with a bigger diameter. Experimental results show the local, temporary, and reversible opening of the BBB through a 10 mm diameter craniotomy, which effectively allowed placing the ultrasound focus over the substantia nigra, unlike a 6 mm diameter craniotomy in which there is a deviation of the focus through that window. Moreover, from these results, it was also determined that the disruption of the BBB was reversible, with an opening duration of 6 h after FUS application. The experimental work developed in this study resulted in a minimally invasive method for the temporary opening of the BBB.

6.
PLoS One ; 18(5): e0286399, 2023.
Article in English | MEDLINE | ID: mdl-37235567

ABSTRACT

In humans, the pituitary gland is covered by a fibrous capsule and is considered a continuation of the meningeal sheath. However, in rodents some studies concluded that only the pars tuberalis (PT) and pars nervosa (PN) are enwrapped by the pia mater, while others showed that the whole gland is covered by this sheath. At PT the median eminence subarachnoid drains cerebrospinal fluid (CSF) to its cisternal system representing a pathway to the hypothalamus. In the present study we examined the rat pituitary capsule to elucidate its configuration, its physical interaction with the pituitary border and its relationship with the CSF. Furthermore, we also revisited the histology of the pituitary cleft and looked whether CSF drained in it. To answer such questions, we used scanning and transmission electron microscopy, intracerebroventricular infusion of Evan´s blue, fluorescent beads, and sodium fluorescein. The latter was measured in the pars distalis (PD) and various intracranial tissues. We found a pituitary capsule resembling leptomeninges, thick at the dorsal side of the pars intermedia (PI) and PD, thicker at the level of PI in contiguity with the PN and thinner at the rostro-ventral side as a thin membrane of fibroblast-like cells embedded in a fibrous layer. The capsule has abundant capillaries on all sides. Our results showed that the CSFs bathe between the capsule and the surface of the whole gland, and ciliate cells are present in the pituitary border. Our data suggest that the pituitary gland intercommunicates with the central nervous system (CNS) through the CSF.


Subject(s)
Pituitary Gland, Anterior , Pituitary Gland , Humans , Rats , Animals , Pituitary Gland/metabolism , Hypothalamus , Pituitary Gland, Anterior/metabolism
7.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902058

ABSTRACT

Whether neuroinflammation leads to dopaminergic nigrostriatal system neurodegeneration is controversial. We addressed this issue by inducing acute neuroinflammation in the substantia nigra (SN) with a single local administration (5 µg/2 µL saline solution) of lipopolysaccharide (LPS). Neuroinflammatory variables were assessed from 48 h to 30 days after the injury by immunostaining for activated microglia (Iba-1 +), neurotoxic A1 astrocytes (C3 + and GFAP +), and active caspase-1. We also evaluated NLRP3 activation and Il-1ß levels by western blot and mitochondrial complex I (CI) activity. Fever and sickness behavior was assessed for 24 h, and motor behavior deficits were followed up until day 30. On this day, we evaluated the cellular senescence marker ß-galactosidase (ß-Gal) in the SN and tyrosine hydroxylase (TH) in the SN and striatum. After LPS injection, Iba-1 (+), C3 (+), and S100A10 (+) cells were maximally present at 48 h and reached basal levels on day 30. NLRP3 activation occurred at 24 h and was followed by a rise of active caspase-1 (+), Il-1ß, and decreased mitochondrial CI activity until 48 h. A significant loss of nigral TH (+) cells and striatal terminals was associated with motor deficits on day 30. The remaining TH (+) cells were ß-Gal (+), suggesting senescent dopaminergic neurons. All the histopathological changes also appeared on the contralateral side. Our results show that unilaterally LPS-induced neuroinflammation can cause bilateral neurodegeneration of the nigrostriatal dopaminergic system and are relevant for understanding Parkinson's disease (PD) neuropathology.


Subject(s)
Inflammasomes , Parkinsonian Disorders , Rats , Animals , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , Caspase 1/metabolism , Dopamine/metabolism , Microglia/metabolism
8.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232716

ABSTRACT

The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson's disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic ß-sitosterol ß-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets.


Subject(s)
Brain , Electron Transport Complex I , Mitochondria , Oxidative Stress , Synucleinopathies , alpha-Synuclein , Animals , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Nitrosative Stress , Peroxisome Proliferator-Activated Receptors/metabolism , Rats , Synucleinopathies/metabolism , Synucleinopathies/physiopathology , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
9.
Behav Neurol ; 2022: 5388944, 2022.
Article in English | MEDLINE | ID: mdl-35637877

ABSTRACT

Exercise performance and zinc administration individually yield a protective effect on various neurodegenerative models, including ischemic brain injury. Therefore, this work was aimed at evaluating the combined effect of subacute prophylactic zinc administration and swimming exercise in a transient cerebral ischemia model. The prophylactic zinc administration (2.5 mg/kg of body weight) was provided every 24 h for four days before a 30 min common carotid artery occlusion (CCAO), and 24 h after reperfusion, the rats were subjected to swimming exercise in the Morris Water Maze (MWM). Learning was evaluated daily for five days, and memory on day 12 postreperfusion; anxiety or depression-like behavior was measured by the elevated plus maze and the motor activity by open-field test. Nitrites, lipid peroxidation, and the activity of superoxide dismutase (SOD) and catalase (CAT) were assessed in the temporoparietal cortex and hippocampus. The three nitric oxide (NO) synthase isoforms, chemokines, and their receptor levels were measured by ELISA. Nissl staining evaluated hippocampus cytoarchitecture and Iba-1 immunohistochemistry activated the microglia. Swimming exercise alone could not prevent ischemic damage but, combined with prophylactic zinc administration, reversed the cognitive deficit, decreased NOS and chemokine levels, prevented tissue damage, and increased Iba-1 (+) cell number. These results suggest that the subacute prophylactic zinc administration combined with swimming exercise, but not the individual treatment, prevents the ischemic damage on day 12 postreperfusion in the transient ischemia model.


Subject(s)
Swimming , Zinc , Animals , Cognition , Ischemia , Maze Learning , Rats , Rats, Wistar , Zinc/pharmacology
10.
Data Brief ; 41: 108015, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35295869

ABSTRACT

We present the data for taurine (2-aminoethanesulfonic acid) treatment to healthy pregnant Sprague Dawley rats (SD). At embryonic day 15 (E15), healthy pregnant SD rats were given taurine treatment (50 mg/L drinking water) and then to their male offspring until they reached the age of eight months. We quantify, in the offspring, the concentration of nitric oxide (NO) through the Griess colorimetric reaction [1] and malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) by the Gérard-Monnier technique [2]. The assessment ages for NO and MDA + 4-HDA were at postnatal day 15 (PND15), 1, 3, and 8 months of age. The body weight was measured along with the integral motor behavior in the perinatal stage through the surface righting reflex test at PND5, cliff aversion test at PND9, grip strength test at PND 11, and front limb and hindlimb suspension tests at PND13. The tests were performed accordingly with [3]. The data obtained showed that SD rats with the taurine administration performed poorly in the motor tests compared with the untreated healthy rats. The taurine-treated rats also showed increased lipid peroxidation preferentially in cerebral regions involved in motor activity, such as the medulla oblongata, the subcortical nuclei, and the cerebral cortex. However, the taurine treatment only increased NO concentration in the evaluated cerebral regions at older ages. At E15, taurine plays a pivotal role in the excitatory/inhibitory neuromodulation, presumably by acting as an excitatory neurotransmitter during the GABA-switch [4]. The increase in the taurine concentration during the embryonic period might cause excitotoxicity in healthy brains, which might lead to impairments in the motor development of the offspring. Therefore, the present datasets can be valuable for researchers who attempt to use the taurine supplement on healthy animal models at gestational stages; and explore the relation with taurine intake during pregnancy in human patients. These datasets are related to the article "Long-term taurine administration improves motor skills in a tubulinopathy rat model by decreasing oxidative stress and promoting myelination" [5].

11.
Neural Regen Res ; 17(4): 854-866, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34472486

ABSTRACT

Overexpression of neurotrophic factors in nigral dopamine neurons is a promising approach to reverse neurodegeneration of the nigrostriatal dopamine system, a hallmark in Parkinson's disease. The human cerebral dopamine neurotrophic factor (hCDNF) has recently emerged as a strong candidate for Parkinson's disease therapy. This study shows that hCDNF expression in dopamine neurons using the neurotensin-polyplex nanoparticle system reverses 6-hydroxydopamine-induced morphological, biochemical, and behavioral alterations. Three independent electron microscopy techniques showed that the neurotensin-polyplex nanoparticles containing the hCDNF gene, ranging in size from 20 to 150 nm, enabled the expression of a secretable hCDNF in vitro. Their injection in the substantia nigra compacta on day 21 after the 6-hydroxydopamine lesion resulted in detectable hCDNF in dopamine neurons, whose levels remained constant throughout the study in the substantia nigra compacta and striatum. Compared with the lesioned group, tyrosine hydroxylase-positive (TH+) nigral cell population and TH+ fiber density rose in the substantia nigra compacta and striatum after hCDNF transfection. An increase in ßIII-tubulin and growth-associated protein 43 phospho-S41 (GAP43p) followed TH+ cell recovery, as well as dopamine and its catabolite levels. Partial reversal (80%) of drug-activated circling behavior and full recovery of spontaneous motor and non-motor behavior were achieved. Brain-derived neurotrophic factor recovery in dopamine neurons that also occurred suggests its participation in the neurotrophic effects. These findings support the potential of nanoparticle-mediated hCDNF gene delivery to develop a disease-modifying treatment against Parkinson's disease. The Institutional Animal Care and Use Committee of Centro de Investigación y de Estudios Avanzados approved our experimental procedures for animal use (authorization No. 162-15) on June 9, 2019.

12.
Toxics ; 9(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34941771

ABSTRACT

Permethrin (PERM) is a member of the class I family of synthetic pyrethroids. Human use has shown that it affects different systems, with wide health dysfunctions. Our aim was to determine bioenergetics, neuroinflammation and morphology changes, as redox markers after subacute exposure to PERM in rats. We used MDA determination, protein carbonyl assay, mitochondrial O2 consumption, expression of pro-inflammatory cytokines and a deep histopathological analysis of the hippocampus. PERM (150 mg/kg and 300 mg/kg body weight/day, o.v.) increased lipoperoxidation and carbonylated proteins in a dose-dependent manner in the brain regions. The activities of antioxidant enzymes glutathione peroxidase, reductase, S-transferase, catalase, and superoxide dismutase showed an increase in all the different brain areas, with dose-dependent effects in the cerebellum. Cytokine profiles (IL-1ß, IL-6 and TNF-α) increased in a dose-dependent manner in different brain tissues. Exposure to 150 mg/kg of permethrin induced degenerated and/or dead neurons in the rat hippocampus and induced mitochondrial uncoupling and reduction of oxidative phosphorylation and significantly decreased the respiratory parameters state 3-associated respiration in complex I and II. PERM exposure at low doses induces reactive oxygen species production and imbalance in the enzymatic antioxidant system, increases gene expression of pro-inflammatory interleukins, and could lead to cell damage mediated by mitochondrial functional impairment.

13.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769132

ABSTRACT

Parkinson's disease (PD) is characterized by four pathognomonic hallmarks: (1) motor and non-motor deficits; (2) neuroinflammation and oxidative stress; (3) pathological aggregates of the α-synuclein (α-syn) protein; (4) neurodegeneration of the nigrostriatal system. Recent evidence sustains that the aggregation of pathological α-syn occurs in the early stages of the disease, becoming the first trigger of neuroinflammation and subsequent neurodegeneration. Thus, a therapeutic line aims at striking back α-synucleinopathy and neuroinflammation to impede neurodegeneration. Another therapeutic line is restoring the compromised dopaminergic system using neurotrophic factors, particularly the glial cell-derived neurotrophic factor (GDNF). Preclinical studies with GDNF have provided encouraging results but often lack evaluation of anti-α-syn and anti-inflammatory effects. In contrast, clinical trials have yielded imprecise results and have reported the emergence of severe side effects. Here, we analyze the discrepancy between preclinical and clinical outcomes, review the mechanisms of the aggregation of pathological α-syn, including neuroinflammation, and evaluate the neurorestorative properties of GDNF, emphasizing its anti-α-syn and anti-inflammatory effects in preclinical and clinical trials.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Parkinson Disease/metabolism , Protein Aggregation, Pathological , alpha-Synuclein/metabolism , Animals , Clinical Trials as Topic , Disease Models, Animal , Drug Evaluation, Preclinical , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Humans , Neuroinflammatory Diseases/etiology , Parkinson Disease/drug therapy , Parkinson Disease/etiology
14.
Mol Cell Neurosci ; 115: 103643, 2021 09.
Article in English | MEDLINE | ID: mdl-34186187

ABSTRACT

The taiep rat undergoes hypomyelination and progressive demyelination caused by an abnormal microtubule accumulation in oligodendrocytes, which elicits neuroinflammation and motor behavior dysfunction. Based on taurine antioxidant and proliferative actions, this work explored whether its sustained administration from the embryonic age to adulthood could prevent neuroinflammation, stimulate cell proliferation, promote myelination, and relieve motor impairment. Taurine (50 mg/L of drinking water = 50 ppm) was given to taiep pregnant rats on gestational day 15 and afterward to the male offspring until eight months of age. We measured the levels of nitric oxide (NO), malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), CXCL1, CXCR2 receptor, growth factors (BNDF and FGF2), cell proliferation, and myelin content over time. Integral motor behavior was also evaluated. Our results showed that taurine administration significantly decreased NO and MDA + 4-HDA levels, increased cell proliferation, and promoted myelination in an age- and brain region-dependent fashion compared with untreated taiep rats. Taurine effect on chemokines and growth factors was also variable. Taurine improved vestibular reflexes and limb muscular strength in perinatal rats and fine movements and immobility episodes in adult rats. These results show that chronic taurine administration partially alleviates the taiep neuropathology.


Subject(s)
Motor Skills , Taurine , Animals , Male , Neuroinflammatory Diseases , Oxidative Stress , Rats , Rats, Mutant Strains , Rats, Sprague-Dawley
15.
Oxid Med Cell Longev ; 2021: 6696538, 2021.
Article in English | MEDLINE | ID: mdl-34040692

ABSTRACT

Oxygen deprivation in newborns leads to hypoxic-ischemic encephalopathy, whose hallmarks are oxidative/nitrosative stress, energetic metabolism alterations, nutrient deficiency, and motor behavior disability. Zinc and taurine are known to protect against hypoxic-ischemic brain damage in adults and neonates. However, the combined effect of prophylactic zinc administration and therapeutic taurine treatment on intrauterine ischemia- (IUI-) induced cerebral damage remains unknown. The present work evaluated this issue in male pups subjected to transient IUI (10 min) at E17 and whose mothers received zinc from E1 to E16 and taurine from E17 to postnatal day 15 (PND15) via drinking water. We assessed motor alterations, nitrosative stress, lipid peroxidation, and the antioxidant system comprised of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Enzymes of neuronal energetic pathways, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), were also evaluated. The hierarchization score of the protective effect of pharmacological strategies (HSPEPS) was used to select the most effective treatment. Compared with the IUI group, zinc, alone or combined with taurine, improved motor behavior and reduced nitrosative stress by increasing SOD, CAT, and GPx activities and decreasing the GSSG/GSH ratio in the cerebral cortex and hippocampus. Taurine alone increased the AST/ALT, LDH/ALT, and AST/LDH ratios in the cerebral cortex, showing improvement of the neural bioenergetics system. This result suggests that taurine improves pyruvate, lactate, and glutamate metabolism, thus decreasing IUI-caused cerebral damage and relieving motor behavior impairment. Our results showed that taurine alone or in combination with zinc provides neuroprotection in the IUI rat model.


Subject(s)
Glutathione Peroxidase/metabolism , Ischemia/drug therapy , Taurine/metabolism , Zinc/therapeutic use , Animals , Male , Rats , Zinc/pharmacology
16.
J Immunol Res ; 2020: 5907591, 2020.
Article in English | MEDLINE | ID: mdl-33282962

ABSTRACT

Chronic consumption of ß-sitosterol-ß-D-glucoside (BSSG), a neurotoxin contained in cycad seeds, leads to Parkinson's disease in humans and rodents. Here, we explored whether a single intranigral administration of BSSG triggers neuroinflammation and neurotoxic A1 reactive astrocytes besides dopaminergic neurodegeneration. We injected 6 µg BSSG/1 µL DMSO or vehicle into the left substantia nigra and immunostained with antibodies against tyrosine hydroxylase (TH) together with markers of microglia (OX42), astrocytes (GFAP, S100ß, C3), and leukocytes (CD45). We also measured nitric oxide (NO), lipid peroxidation (LPX), and proinflammatory cytokines (TNF-α, IL-1ß, IL-6). The Evans blue assay was used to explore the blood-brain barrier (BBB) permeability. We found that BSSG activates NO production on days 15 and 30 and LPX on day 120. Throughout the study, high levels of TNF-α were present in BSSG-treated animals, whereas IL-1ß was induced until day 60 and IL-6 until day 30. Immunoreactivity of activated microglia (899.0 ± 80.20%) and reactive astrocytes (651.50 ± 11.28%) progressively increased until day 30 and then decreased to remain 251.2 ± 48.8% (microglia) and 91.02 ± 39.8 (astrocytes) higher over controls on day 120. C3(+) cells were also GFAP and S100ß immunoreactive, showing they were neurotoxic A1 reactive astrocytes. BBB remained permeable until day 15 when immune cell infiltration was maximum. TH immunoreactivity progressively declined, reaching 83.6 ± 1.8% reduction on day 120. Our data show that BSSG acute administration causes chronic neuroinflammation mediated by activated microglia, neurotoxic A1 reactive astrocytes, and infiltrated immune cells. The severe neuroinflammation might trigger Parkinson's disease in BSSG intoxication.


Subject(s)
Astrocytes/drug effects , Astrocytes/immunology , Inflammation/etiology , Neurotoxins/immunology , Sitosterols/administration & dosage , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Animals , Astrocytes/metabolism , Biomarkers , Chronic Disease , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Lipid Metabolism/drug effects , Male , Microglia/immunology , Microglia/metabolism , Neurotoxins/adverse effects , Oxidative Stress/drug effects , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rats , Substantia Nigra/pathology
17.
Mol Pharm ; 17(12): 4572-4588, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33125243

ABSTRACT

Neurotensin (NTS)-polyplex is a multicomponent nonviral vector that enables gene delivery via internalization of the neurotensin type 1 receptor (NTSR1) to dopaminergic neurons and cancer cells. An approach to improving its therapeutic safety is replacing the viral karyophilic component (peptide KPSV40; MAPTKRKGSCPGAAPNKPK), which performs the nuclear import activity, by a shorter synthetic peptide (KPRa; KMAPKKRK). We explored this issue and the mechanism of plasmid DNA translocation through the expression of the green fluorescent protein or red fluorescent protein fused with KPRa and internalization assays and whole-cell patch-clamp configuration experiments in a single cell together with importin α/ß pathway blockers. We showed that KPRa electrostatically bound to plasmid DNA increased the transgene expression compared with KPSV40 and enabled nuclear translocation of KPRa-fused red fluorescent proteins and plasmid DNA. Such translocation was blocked with ivermectin or mifepristone, suggesting importin α/ß pathway mediation. KPRa also enabled NTS-polyplex-mediated expression of reporter or physiological genes such as human mesencephalic-derived neurotrophic factor (hMANF) in dopaminergic neurons in vivo. KPRa is a synthetic monopartite peptide that showed nuclear import activity in NTS-polyplex vector-mediated gene delivery. KPRa could also improve the transfection of other nonviral vectors used in gene therapy.


Subject(s)
Drug Carriers/chemical synthesis , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Neurotensin/administration & dosage , Peptide Fragments/chemical synthesis , Active Transport, Cell Nucleus , Animals , Cell Line , Cell Nucleus/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Genetic Therapy/methods , Genetic Vectors/genetics , Male , Mice , Models, Animal , Nanoparticles/chemistry , Neurotensin/genetics , Neurotensin/pharmacokinetics , Patch-Clamp Techniques , Plasmids/genetics , Rats , Receptors, Neurotensin/metabolism , Single-Cell Analysis , Stereotaxic Techniques
18.
J Complement Integr Med ; 17(3)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32543455

ABSTRACT

BackgroundDasapatrachurnam (DPC), a multicurative powder prepared from the leaves of 10 green leafy vegetables, was developed recently with known ethnobotanical and ethnopharmacological significance. However, its functional role in curing a disease is not yet scientifically proven. The present study aims at performing the phytochemical screening of DPC and exploring its possible activity as bacteriostatic, antineoplastic and anti-inflammatory. MethodsWe performed qualitative and Fourier transform infrared spectroscopy (FTIR) to find out the presence of active compounds and tested the bacteriostatic activity in four bacterial strains namely Bacillus subtilis, Escherichia coli, Streptococcus pyogenes and Staphylococcus aureus by agar well diffusion method. We further explored the antineoplastic activity in vitro in C6 and HEK293 cell lines by cell viability assay and the anti-inflammatory activity in the ovalbumin-induced inflammation in male Wistar rats. ResultsDPC showed 60% solubility in PBS and showed the presence of flavonoids and glycosides. FTIR results indicated the presence of alkyl, ketone and aldehyde groups. The bacteriostatic activity of DPC was higher (60%) in E.coli and lower (8%) in S.aureus, when compared to streptomycin. The anti-cancerous activity of DPC in C6 and HEK293 cancer cells was similar to their respective positive controls, curcumin and camptothecin. The anti-inflammatory activity of DPC was more evident with local administration in all the parameters studied in brain hippocampus, kidney, liver and spleen in ovalbumin-induced rats. ConclusionOur results, for the first time, suggest the potentiality of the DPC in treating bacterial diseases, cancer and also inflammation. Our results also suggest the possible therapeutic role of DPC in treating chronic kidney disease.


Subject(s)
Dietary Supplements/analysis , Phytochemicals/pharmacology , Plant Leaves/chemistry , Plant Preparations/pharmacology , Vegetables/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Flavonoids/analysis , Glycosides/analysis , HEK293 Cells , Humans , Male , Powders , Rats , Rats, Wistar
19.
Acta Neuropathol Commun ; 8(1): 56, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321590

ABSTRACT

The spreading and accumulation of α-synuclein and dopaminergic neurodegeneration, two hallmarks of Parkinson's disease (PD), have been faithfully reproduced in rodent brains by chronic, oral administration of ß-sitosterol ß-D-glucoside (BSSG). We investigated whether a single injection of BSSG (6 µg BSSG/µL DMSO) in the left substantia nigra of Wistar rats causes the same effects. Mock DMSO injections and untreated rats formed control groups. We performed immunostainings against the pathological α-synuclein, the dopaminergic marker tyrosine hydroxylase (TH), the neuroskeleton marker ß-III tubulin, the neurotensin receptor type 1 (NTSR1) as non-dopaminergic phenotype marker and Fluro-Jade C (F-J C) label for neurodegeneration. Using ß-galactosidase (ß-Gal) assay and active caspase-3 immunostaining, we assessed cell death mechanisms. Golgi-Cox staining was used to measure the density and types of dendritic spines of striatal medium spiny neurons. Motor and non-motor alterations were also evaluated. The study period comprised 15 to 120 days after the lesion. In the injured substantia nigra, BSSG caused a progressive α-synuclein aggregation and dopaminergic neurodegeneration caused by senescence and apoptosis. The α-synuclein immunoreactivity was also present within microglia cells. Decreased density of dopaminergic fibers and dendritic spines also occurred in the striatum. Remarkably, all the histopathological changes also appeared on the contralateral nigrostriatal system, and α-synuclein aggregates were present in other brain regions. Motor and non-motor behavioral alterations were progressive. Our data show that the stereotaxic BSSG administration reproduces PD α-synucleinopathy phenotype in the rat. This approach will aid in identifying the spread mechanism of α-synuclein pathology and validate anti-synucleinopathy therapies.


Subject(s)
Disease Models, Animal , Nerve Degeneration/pathology , Parkinson Disease , Sitosterols/administration & dosage , alpha-Synuclein/metabolism , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Injections, Intraventricular/methods , Nerve Degeneration/chemically induced , Rats , Rats, Wistar , Sitosterols/toxicity , Substantia Nigra/drug effects , Substantia Nigra/pathology
20.
MethodsX ; 7: 100821, 2020.
Article in English | MEDLINE | ID: mdl-32195138

ABSTRACT

An animal model, suitable for resembling Parkinson's disease (PD) progress, should show both, motor and non-motor alterations. However, these features have been scarcely evaluated or developed in parkinsonian models induced by neurotoxins. This protocol provides modifications to original methods, allowing six different motor and non-motor behavior tests, which adequately and timely emulate the main parkinsonian sensorimotor alterations in the rat or mouse: (1) bilateral sensorimotor alterations, examined by the vibrissae test; (2) balance and motor coordination, evaluated by the uncoordinated gait test; (3) locomotor asymmetry, analyzed by the cylinder test; (4) bradykinesia, as a locomotor alteration evidenced by the open field test; (5) depressive-like behavior, judged by the forced swimming test; and (6) hyposmia, assessed by the olfactory asymmetry test. Some advantages of using these behavioral tests over others include:•No sophisticated materials or equipment are required for their application and evaluation.•They are used in rodent models for parkinsonian research, but they can also be helpful for studying other movement disorders.•These tests can accurately discriminate the affected side from the healthy one, after unilateral injury of one hemisphere, resulting in sensorimotor, olfactory or locomotor asymmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...